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A LOGICAL NET MECHANIZATION FOR

TIME-OPTIMAL REGULATION

By Fred B. Smith, Jr.

SUMMARY

A technique is described for mechanizing relay controllers. A quantized

phase space for the plant is mapped into two or more points by a collection of

logic elements whose Boolean inputs are the quantized variables. If the switch-

ing surfaces are known explicitly, the logic (the mapping function) of the controller

may be computed in a straightforward manner. If the surfaces are known only

implicitly, the logic may be adjusted on a representative collection of particular

values of the desired mapping function.

Experimental results are presented for time-optimal control of third-order

and fourth-order plants.
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A Boolean variable representing the jth quanta of the ith variable

= 0 ifphase point is not within that quanta

= 1 ifphase point is within thatLquanta

union - logical "or"

Xl 0x 2 0x 3 ..Ux n

threshold element constants

pitch attitude

pitch rate

angle of attack



gimbal deflection

control variable

INTROD UC TION

Mechanization of closed-loop " optimal" relay controllers is usually difficult
to accomplish satisfactorily. This section of the report provides a means for
overcoming two of the basic difficulties: the implementation of the nonlinear
control law and the utilization of an open-loop control law for closed-loop control.

The first difficulty arises because a mathematical criterion for optimal
quality of control usually demands a nonlinear relationship between the measured

state of the system and the control variables. The second difficulty is due to a
shortcoming of the theory. Instead of providing an explicit expression for the
control u as a function of the state variables x, it most frequently yields the
control variable u as a function of time (t) for given initial conditions x(0).

In some cases, these problems can be resolved by repeatedly solving the
open-loop control problem on a sufficiently fast time scale compared with the
dynamics of the system to obtain an adequate approximation to the desired closed-
loop control. This is the method used in ref. I to obtain zero-dimensional
time-optimal control of a fourth-order system with real roots. Such a procedure
provides more information and demands a more complex control computer than
is needed for the time-invariant control problem.

It has often been suggested that when the optimum control variable is bang-
bang, the switch times of a collection of open-loop solutions could be used to

define the closed-loop control law. The method presented here is related to

that procedure. A collection of optimum open-loop trajectories is used to

define those regions in phase space associated with a positive forcing function

and those associated with a negative one. In order than only a finite number of
points need be considered, the phase space of measured variables is quantized

and a sign associated with each hypercube. This introduces an approximation

in the surface separating the regions of different sign. It is assumed that the

control can be made acceptably close to optimum by choosing a sufficiently fine

quantization. Hopkin and Iwama (ref. 2) took a similar approach in quantizing

and assigning signs to the quanta, but suggested a memory location for each

quanta using a magnetic drum or core memory. This provides great flexibility
but memory requirements become prohibitive. If five variables are each divided

into 32 quanta (a reasonable fineness for good approximation to the optimum
response), more than 107 memory locations are required. Itwill be shown

that it is possible to collect together those points with the same sign in a logic

expression and mechanize this with a small number of threshold logic elements

without losing the flexibility associated with drum or core storage. Such a



procedure is applicable in principle to control of any system in which the control
variable, decision, or classification to be made is one of a finite number of

states and the desired output state is known for every input state (every possible
combination of input variables). When the desired output state is the same for
a large number of "neighboring T_input states, thenonly a representative sample
of the input and corresponding output state is required. This has provided the

basis for many of the pattern recognition experiments and, in the work presented
here, forms the basis for obtaining a controller from arelatively small set of
representative open-loop optimum trajectories.

CONTROLLER DESIGN

When control specification is given only implicitly through a set of desired

responses, it is not possible to completely separate the problems of mechanization

from those of controller synthesis. A solution of this combined problem of

controller design is suggested in this subsection. It begins with a proposed

mechanization of a logic function which expresses an assumed closed-loop control

law u(x). If the control law is explicitly known then the problem ends there. If

the control law is not known explicitly, a method is provided for adjusting the

logic to make the controller fit the known information.

Control Logic

It is first necessary to transform the usual form of closed-loop control law
into some form of logic expression. This is done by dividing the region of interest
of each of the m variables into k sub-regions called quanta (figure la). If

rj_ 1 < xi <_ rj

then the variable x i is said to be in the jth quanta. A Boolean variable,

j i = 1,2 ... m
X.
i j=l,2.., k

is defined for each of the mk quanta. An x_ has the value one if the magnitude of

the ith measured variable xi, is in the jth quanta, and has the value zero if the
magnitude is not. The m-dimensional phase space is thus divided into km hyper-

cubes, each of which is specified by a set of m quanta. A switching function

Jl J2 JmQ = x x 2 .. x m

is defined for each of these hypercubes. This switching.function has the value one
if a measured phase point is within that hype_cube (all xJi = 1) or the value zero of

the phase point is not within it (at least one x_i= 0). If t}le number of measure-
ments, m, is equal to the order of the system, n, and the plant being controlled
is time-invariant, then control law u(x) will divide the n-dimensional space into
regions in which the control variables are uniquely determined. The surface
separating these regions is called the switching surface. A,mique control
variable state (set of unique signs) may be associated with each of the n-dimen-
sionalhypercubes except those through which a switching surface passes. These
may be assigned a state in any consistent manner. If m<n, then there may be
regions in the m space in which the state of the control variable is not uniquely
defined.



It is assumed, however, that a state is assigned in some manner to each
hypercube. A logic function, F, which is true when the measured phase point
is within any of the hypercubes having the same control variable state, may
then be written. The function F has the form,

F : LYQ (all Q of same control variable state) (1)

(The O notationwill be used here for logical " or" to avoid confusion with the

algebraic operation of addition to be used later on the Boolean variables. )

is,

For example, the logic function collecting positive hypercubes of figure lb

l 2 2 3 x 4 3 x4
F = 7j-Q = x IJ x (x IJ x IJ )_J x

C. V. (_ 2 2 1 1 1 2 1
(2)

A mechanization of this function provides a controller based on the quantized

switching surface of figure lb. Whenever a phase point is on the positive side

of the surface, equation (I) is true (one) and vice versa. The logic of equation

(2) can be realized by anumber of types of hardware, but the type which seems

most promising is threshold logic. Any logic function can be represented by

a set of threshold elements. Within a given framework of elements, very

major changes in the logic function generated can be made by simple changes

of constants. The expression for a single threshold logic element is

T = sign [Ey i k. +kl o] (3)

where

Yi

k i ,

)2

T

are Boolean variables having values 0 or 1

i = 0, 1,2,... are constants

algebraic summation

is considered true (T = I) if the sign of bracket terms is positive or
false (T = 0) if sign of bracket terms is negative or zero

Quite different logic functions can be mechanized by such an element by
simple changes of constants, k i. For example, using procedures described
in the appendix it is possible to compute a single logic element which correctly

maps points on either side of a large class of monotonic surfaces of high
dimensions. Although optimum switching surfaces for systems having more
than one switch are not monotonic, work presented later in this section of

the report shows that the control logic for a number of such switching surfaces
can be adequately approximated by a single element. A second-order example
shows that some non-monotonic surfaces can be exactly mapped by a single
element.
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Linear programming provides one technique for computing constants, ki,
if the logic function is realizable by a single element. However, the set of
simultaneous equations and inequalities which must be solved is prohibitively
large for this application because of the large number of Boolean variables.
A suitable way of finding k's for the present application is through the use of
the constructive theorems of ref. 3; see appendices. These theorems permit
complete specification of at least one set of threshold elements for any logic
function of the form of equation (I) (Appendix: Corollary 2). This set of
elements and their constants is not unique and it is up to the designer to find
the most suitable set. As an example of the use of the theorems the threshold
element realizing the logic of equation 2 is computed in the appendix. The
result is,

2 + 2x + 2xI + 3xI - 3 (4)

It is seen that equation (4) is positive whenever equation (2) is true, and
negative when not true and the desired division of space shown in figure Ib
is mechanized.

For plants having complex roots the optimum switching surface may not
be even approximately monotonic outside the n-I switching region. For example,
the time-optimal switching surface for one-dimensional control of a second-order
plant with complex roots is shown in figure 2. In this case it is possible to find
a single threshold element to correctly map the points on one side of the quantized
surface. Constants for the element are given in table I, It is expected, however,
that one element wi!inot, in general, be sufficient for exact mapping of such
surfaces for higher order plants.

The quantized switching surface for one-dimensional time-optimal control
of a third-order plant with real roots is shown in figure 3. This surface is
monotonic in the region of interest and is correctly mapped by the single
element

u = sign E 23 x. k. + k
i=l j=-16 i i o

Constants for this element are given in table If. Because of symmetry about

the origin, the surface in only one half of the space is considered. Typical

responses for this plant using a controller with this logic are presented later.
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Logic Adjustment

The ability to compute threshold elements for mechanizing a given logic
expression discussed in the previous paragraphs is of little value for controller

mechanization when the switching surface is not known explicitly. For plants
of order greater than three, this is the usual case.

Solution of the mathematical optimization problem most often yields a
specification for the control variable as a function of time. Each such solution

provides implicit information about the switching surface through the switch
times. Each open-loop trajectory provides partial information about the regions
of positive and negative control variable in the m-space. In the quantized

space a finite set of such trajectories, properly distributed throughout the
space, is sufficient to define the optimum control variable sign for every
hypercube. To obtain such a complete set of trajectories is very time-consuming
(expensive) and is in fact, not necessary because of the high probability of a
given hypercube having the same sign as its neighbors. If a form or framework

of threshold elements is assumed, a trial and adjustment of the logic based on
an incomplete set of trajectories can be used to approximate the implicitly
defined switching function. Such a procedure is called "training" and is shown
schematically in figure 4a. A random initial condition x(0) is chosen from the
x-region of interest and the optimal solution u(t,x(0)) obtained. This x(0) and

u(t) are then applied open-loop to the equations describing the system to be
controlled;and at periodic time intervals, the optimum control variable is
compared with that specified by the logic network for that x(t). If the two

control variables u(t) and u(x(t)) are in the same state, no change is made and
the equations are integrated through the next time increment. If the two control

variables are in different states, the logic of the net is changed by changing the

appropriate constants of the threshold elements in a direction tending to give
the correct answer for that point. For example, if the logic is of the form,

and

u(x) : Imk 1sign _, Z xJ. ki

i=l j=l 1 1

h I h 2 hn

u(t) = +I, x(t) = Xl ' x2 "''' Xn

u(x(t)) = -1 (wrong sign)

hi
then .k i , i = 1, 2 .... m are each increased by one increment. This makes
£x_k_ less negative by m units. If it is still of wrong sign, another correction

can be applied or the equations can be integrated through the next time increment
and another correction not applied until the next time that point (hypercube) is
passed through. Such considerations govern the nature of convergence of the
procedure. In most work reported here one correction is applied for each
pass through a point.



It is not necessary of course to use open-loop responses in the adjustment.

The logic could just as readily be trained to " mimic" another controtler

operating in a closed loop by placing it in parallel with the controller or by
" looking at" operating records.

There are two ways of determining how well and to what extent the logic

adjustment is proceeding. The first is to keep track of the percentage of
points in error. Typical plots of per cent error versus number of training
trajectories are shown in figures 5, 6, and 7 for third- and fourth-order optimal
trajectories. It is seen that the number of errors drops very rapidly to less
than 10 per cent and then levels off as final adjustments are made on points
near the switching surface. The final appar.ent leveling off is primarily a

function of the resolution permitted in the k_'s.

The second method of evaluating the stage of logic adjustment is to use

the logic as a controller (figure 4b) to permit qualitative evaluation of the

responses, This is a more time-consuming check and is normally done only

once or twice during the training to obtain some feel for the control character-

istics relative to the training curve.

APPLICATIONS - TIME-OPTIMAL CONTROL

Minimum response time was chosen as the optimization criterion on

which to test the ideas previously discussed. The control variable is known

to be bang-bang up to the response time,after which it is either turned off
(for zero-dimensional control) or a linear control switched in (to control the

plant target set about the origin for higher dimensional control). To obtain
a representative set of trajectories exterior to the target set it is most

efficient to choose a set of initial conditions uniformly distributed in state

space and to find the optimum control variable u(t,x(0) by solving the set of

transcendental equations described in section I. Solutions are then selected

at random from this set and open-loop trajectories computed at intervals

of 0.10 seconds and stored on magnetic tape for the logic adjustment program.

The training or logic adjustment program averaged about 20 minutes per

thousand training trajectories on a Honeywell H-800 general purpose digital
computer. The methods are demonstrated by developing controllers for a

typical 250,000-pound launch vehicle at the maximum-q flight conditions.
Pitch attitude provides fourth-order equations; pitch rate control, third order.

Each of these is discussed in the following paragraphs with presentation of
simulation results.



One-Dimensional Time-Optimal
Control Of Third-Order Plant

Rigid vehicle equations are taken to be;

Ioooo,.I o_ .4o41IiJI:l= 1__0 -0. 0274 -0. 0421 +

0 -0.02

u (7)

The requirement that pitch rate be brought to zero in minimum time and held

there specifies a one-dimensional time-optimal controller. Ideally, O is
brought in minimum time to a line segment in the 0, a, (5 space and held
there with a unique linear control (considered to be the third state of a three-
state controller). In this case, the line segment and linear controller are

E}(:r) = o
2. 140 a (T) = 4. 404 5(T) = 0

_[_SlT) I = 7. 18

(8)

u (after response time) = -0. 1625a + 0. 19525

(Illustration and discussion of specification of controllers and target sets are
given in sections 1 and 4. )

Because of surface approximation in quantization and non-ideal components,

system motion to some small region about the line segment must be accepted.
The manner in which the linear control state is switched in is shown in figure 8.
The function

a.x. -Z_1 1 1

is used to switch from the bang-bang state to the linear state. The

n

Z _.x = 01 i
i= 1

is the equation of the target line,and when the error in this is less than A

{chosen to be equivalent to be approximately one quanta) relay R pulls in.

The quantized optimum switching surface for the system is shown in
figure 3. This surface representation was obtained by "bracketing" it
with solutions for u(t, x(0)) section 1, the x(0)'s being chosen in the center
of each cube. The computed constants for collecting with a single threshold
element all hypercubes on one side of the surface are given in table II.
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Some typical responses of the system with the computed logic are shown

in figure 9. Quantization intervals were:

_0 = 0.00625 rad/sec

= 0.003125 rad

_5 = 0.00625 tad

in the range

-o.i<--0 <=0.i

-0.05 -<- 0.05

0 -e 5 = 0. i

The effect of quantized switching surface can be noted in the traces of the
control variable and gimbal deflection, 5. Pitch rate, e, is brought to

within the first quanta in all cases and held there with the theoretical control

variable of equation (8), which keeps e a constant. The necessity for a
control function to take out small errors in @ after the response time is

shown in the third trace of figure 9. Angle of attack, _, is seen to diverge
after the response time because of the small constant error in e. This is
corrected in subsequent simulations by using linear switching to take out
residual errors.

To obtain a comparison of computed logic and adjusted logic control, a
set of 152 open-loop trajectories with initial conditions fairly uniformly dis-
tributed throughout the space of interest were obtained. Trajectories with
switches outside the region of interest were omitted even though the initial
conditions were within. This set of trajectories was taken in random order
and used to adjust a single threshold element in the manner shown in figure
4a and discussed earlier. The per cent error, (errors in N points)IN as
a function of the number of trajectories used, is shown in the training curve

of figure 5. There was considerable scatter in the individual points and only
the smooth curve trend is shown. First switch points are those between the
initial condition and the first switch time, second switch points those between
the first switch time and the second, etc. Initial constants for the logic

were all zero. After repeating these 152 trajectories 18 times in the train-
ing procedure, the weights of Table III and the closed-loop responses of figure
I0 were obtained. These responses are good approximations to those of
figure 9 using computed logic. Linear switching bringing 0 and 0" to zero
was used in the third control variable state instead of the control of equation

(8). The trend of the training curve is still downward, and further training

would undoubtedly improve the approximation to optimum response.



One-Dimensional Time-Optimal
Control of a Fourth-Order Plant

The fourth-order plant equations are obtained by adding an equation for
pitch attitude to equation(7).

Fe
i ,,

0 1 0

0 -0. 0395 2. 140

0 1.0 -0. 0274

0 0 0

The plant equations become

0 0

-4. 404

-0. 0421 a

-0. O2 6

-- "T

0

0
d-

O

0.2

U
(9)

Requiring pitch attitude be brought to zero in minimum time and held there
specifies a one-dimensional target,

2. 140a

O(T)= 0

O(T) = 0

(T) t-4. 404_5(T) = 0

[6(T)[ -<- 7. 18

u(afterT) = -0. 1625a + 0. 1952 6

(lO)

It was not practical to bracket the four-dimensional surface as was done in
the third-order sample. A set of approximately400 initial conditions was
chosen at uniform intervals in the arbitrarily defined region of interest of the
four space,and the method of section 1 was then used to obtain the optimum
forcing function for each initial condition. These solutions were taken in random

order, points on open-loop trajectories computed at intervals of 0. 10 seconds,
and the quantized coordinates of each point stored on magnetic tape. Trajectories
with one or more switch points outside the region of interest were omitted. This
provided a set of 198 trajectories (2435 points) in the space,

0 <_0 <0. I

-o. 12 <_o <_o. 12

-0. 1 <_a <_ 0. 1

-0. 12 _. 6 <__0. 12

(11)

Quantization intervals in this space were,

_0 = 0.00625

_0 = 0.00750

= 0.00625

Z_5 = 0.00750

(12)
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for a total of 219 = 524,288 four-dimensional cubes. The sample set of
trajectories was then used to adjust the logic of single threshold element
in the manner previously described. The training curve of figure 6 shows
the convergence of the adjustment procedure. Initial logic constants were
taken to be zero. As in the training of the third-order logic, the errors are
down to 10 per cent after only 100 trajectories. After I000 trajectories,
errors are down to approximately five per cent, and after 5000 trajectories
down to about 2. 5 per cent. The ultimate fractional errors attainable are
pmmarily determined by the functional form assumed for the logic (in figure
6, functional form is a single threshold element) and by the resolution per-
mJtted in the logic constants. Resolution is defined here as the ratio of the
maximum _J. to the increment of k@ when an error is made. The resolution

Is mcreasinlg dumng the tramlng plrocess(flgure 6) and at 5000 trajectories

is artiflcally increased by a factor of two. This causes a pronounced jump
downward in the fractional errors, especially second and third switch points.
At 7500 trajectories, it is again increased by two,making it approximately
one part in 80. At 11,000 trajectories, it is increased to approximately one
part in 800. Closed-loop control responses using logic at three different
slages of training (198, 2100,and 11,000 trajectories) are shown in figure 11.
Resolution of one part in 80_vas the limit of the available hardware for the
fourth-order controller so that control could not be evaluated at 13,000

trajectories. The plant is statically unstable. It is seen that the first
controller has not yet stabilized it although the errors are less than 10 per
cent. The second controller (figure l lb) has apparently stabilized the system

but does not provide anything approaching optimum response. The third and
final controller (figure Iic), after 11,000 trajectories does provide a good
approximation to an optimum controller_ :_ Additional typical responses for

the final controller are given in figures 12 and 13. As in the third-order
system, a linear switching is used as the third state of the control variable
and reddces the small residual errors within the smallest quanta. The

switching function used is given in figure 8.

The same sample of trajectories was used to adjust the logic of the next
step up in logical complexity - a set of orthogonal threshold elements.
(Orthogonality meaning that one and only one element of the set will have
an output for any input. ) Such a set was obtained by dividing the phase space
into non-intersecting regions and assigning a threshold element to each one.

Ti_e training curve for a set of 16 elements is shown in figure 7. The 16
regions in the space of equation (11) were defined by the hyperplanes,

0 = 0.05

_} -- 0

ce --- 0

(13)

6 - 0

*Logic constants for the controller,are given in table IV.
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and the boundaries of the region of interest, equation (11). It is seen that

convergence is somewhat more rapid than in the single element ease. Equivalent

error levels were reached with a resolution in k's of approximately one-half that
required for the single element. Limitations of time and equipment prevented

analog investigation of this system.

Mechanization

The threshold element required for mechanization of the third-, and fourth-

order controllers described here is of unusual nature. It has a large number

of inputs (119 for the fourth-order system) only n of which are "active" for

any given input. Its weighting elements must have quite high resolution

(approximately one part in 400 for the computed third-order logic). To

accomplish this most rapidly and economically for the simulation study, the
outputs of commereial ladder networks, one for each of the n variables, were

summed in a standard analog amplifier. Quantization of the analog variables

was accomplished by a standard analog-to-digital conversion channel for each

variable. A binary number of four bits plus sign (quantizing magnitude to

one part in 16) was found adequate for the systems investigated. Diode-

transistor logic was used to decode the binary number and apply the proper

inputs to the ladder network. The system is shown schematically in figure

14. To obtain the resolution required from the six bit ladder (one part in 64),

itwas sometimes necessary to subtract a linear function of the coordinates

x. from the discrete switching functions. The linear function .was chosen so
thlatthe deviations from the line at the center of each quanta xJ.was a multiple

of the smallest ladder step and the maximum deviation was le_s than 64.

In these cases the actual switching function mechanized was

sign 2.; x. + E oe. x.
= 1 j= -16 1 1 i = 1 1 1

Discussion of Simulation

A number of points in the simulation results indicate several conclusions

that are worthy of special note. The quantization of the state variable magnitude
to one part in 16 (four bit plus sign binary numbers) appears to be adequately

fine for switching surface quantization if a linear switching is used to reduce

residual errors within the smallest quanta. A nonlinear quantization with

greater accuracy near the origin or target set might be advantageous. A

short investigation of this proved inconclusive.

12



A surprisingly small set of representative trajectories defines a good
controller through the logic training procedure. In the fourth-order example,
the set of 198 trajectories with points in less than 0. 5 per cent of the hyper-
cubes in the phase space gave a good approximation to an optimum controller.
The effectiveness of these points is greater than a set of randomly selected
points because after the first switch every point is on the switching surface.
The set of initial conditions on which the controller was evaluated was much
larger than the typical ones presented in figures 12 and 13. In addition to
evaluation on the fourth-order plant, the logic was used as the controller
for a 13th-order flexible launch vehicle (section I). Responses for all initial
conditions were good. Departures from optimum are primarily attributed
to either the small sample size or the incorrect classification by the logic of
the points being trained on. Although less than two per cent of these points are
in error at the stage of the analog test, those are the critical points on or
near the switching surface. The resolution of the logic {one part in 80) at
this stage is a limiting factor in the correct classification of points. When the
resolution is increased by I 0 (to one part in 800),errors drop to about one
per cent.

CONC L USIONS

It is possible to store information about surfaces or regions in phase

space of high dimension without complex hardware by quantizing coordinates

and collecting members of the same sets with logic elements.

Quantization may be relatively coarse and stillgive good control.

If limited information about the space is known through a number of

sample responses with desired characteristics, a controller may be obtained

by adjusting logic to give these responses. If the sample set is sufficiently
representative, then the controller obtained will provide control with desirable
characteristics for a much wider class of inputs than the sample set.

Using the time-optimal criterion to obtain a set of sample responses,

controllers for plants up to fourth-order with real roots may be designed

quickly (a few hours computer time} by simulating the system and adjusting

the logic digitally.

The design procedure seems practical and applicable to plants of higher

order than fourth and to plants with complex roots.

Physical implementation of fixed controllers is straightforward. The

resulting cc,ntroller is simple and could be made more reliable than a digital

computer. Implementation is well suited to microminiaturization or molecular

deposition techniques.

13



Additional work is desirable in the area of specifying a more general set

of threshold logic elements than those investigated here. Such a set should

increase the speed of convergence of the adjustment procedure, reduce the

resolution required in the weighting elements to a low level, and be capable

of mapping more complex surfaces. A multi-level set of threshold elements

capable of mechanizing logic collecting points on one side of any continuous

surface seems a distinct possibility. This work should take into consideration

the nature of elements best suited for physical implementation (number of

inputs per element, resolutions easily attainable, etc. ).

Additional work is also desirable in the area of utilizing the adjustable

nature of the logic. Such a study would investigate criteria for adjustment

based on the performance of the logic itself (such as smoothness or continuity

of output) or performance of the plant under control by it or a combination

of the two. The study should also investigate the various "variable memory"

devices available, possibly suggest additional ones, and construct a logic

system for simulation purposes based on the most promising.

This investigation was conducted at the Minneapolis-Honeywell Regulator

Company under the sponsorship and with the financial assistance of the National

Aeronautics and Space Administration.

Minneapolis-Honeywell Regulator Company

Minneapolis _ Minnesota

July 31_ 1962
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APPENDIX

COMPUTATION OF THRESHOLD ELEMENTS

Four theorems of ref. 3 were useful in the work reported. Slightly

modified forms of these theorems are given here. Two corollaries appli-
cable to division of n-dimensional space by threshold elements are proved.

An example computation of a threshold element for a switching surface is

given.

Definition: The threshold operator, T, converts the algebraic expression

g = al Xl +a2x2 +-'- anYn - ao, into a switching function, F, having the
value zero or one depending on whether g is greater than zero, i. e.,

F = T(g) = 1 g > 0

= 0 g <0

Physical implementation of T(g) is called a threshold element.
n

Theorem I: If switching function F is of the form F = i_.l fi, where fi are
logic functions having value 0, l, then an algebraic :uncnon g such that

F = T(g) is,

n

g = 2; f. - (n-l)
i = 1 1

Corollary 1: Each hypercube in n-dimensional phase space is specifiable by
such an algebraic expression. As discussed in the text, the switching function,
Q, representing each hypercube is specified by an expression of the form,

Jl J2 Jn
Q = x 1 x 2 ... x' n

J
where x i take on values 0, 1 depending on whether a phase point in question
is within that quanta or not. Consequently from theorem I

En ,1Q-- T(g) = T i= 1 -(n-I

Theorem II: Ifa switching function F is of the form F = f l U f2 "''0fn'
then an algebraic function g such that F = T(g) is

n

g = 2] f.
i = 1 1
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Corollary 2: A switching function U, collecting any set of hypercubes in an
n-dimensional space is representable by a collection of threshold elements
U = T lET(g)] This follows directly from corollary 1 and theorem II.

Definition: Two algebraic functions, gl and g2'are said to be equivalent if

whenever gl > O, g2 > 0

gl <0, g2 <__0

and when g2 > O, gl > 0

g2 <_ O, gl <_0

Definition: a) min g > 0 is the smallest value greater than zero taken by g
when the Boolean variables ofg take on all possible combinations of 0, 1.

b) Max g <--0 is the largest value less than or equal to zero taken on by g

under such conditions, c) Min g (x i = 1) >0, Max g (xi = 1) < 0 are Min g20
and Max g< 0 under conditions that x i is considered constant equal to 1.

n

Theorem III: Let g = i=E1 a.1 Y'I k, k_>_0

a) If Min g > 0 is p, gl = g - s is equivalent tog, 0 < s < p.

b) If Max g < 0 is p, gl = g + r is equivalent to g, 0 < r < p.

e) If Min g (xa = 1) > 0 is p, g which is obtained by changing aj to
aj - s is ecfuivalent to g, 0_- s < p, 1 _j < n.

d) If Max g (xj = 1) < 0 is -p, g, obtained by changing aj to aj +r is
equivalent _o g, 0 _<_r < j, 1 <j <i_n.

e) Functions g and Kg are equivalent for any real K > 0.

Theorem IV" A switching function of the form F 1 = T [T(gl) + T(g2) ] is
equivalent to the switching function F2 = T(Kg I + g2 ), where K > {kl/P),
p is Min gl > 0, if the following two conditions are satisfied:

a) Whenever g2 > O, gl > 0

b) Whenever gl > O, g2 + kl > 0

As an example of the use of these theorems, the threshoid iogic element
collecting points on the positive side of the quantized surface of figure 1 is
computed. The logic function collecting the squares is

4 3 4
F = x_k) x_ (x_U x_U Xl)k)x 2 x 1

16



Define additional switching functions

1
fl = x2

= 2_9 x31U 4 2f2 x_ (x 1 x 1) = x 2 h 2

3 4
f3 = x2 Xl

By theorem I, the threshold element which is true only when fl is true is

T(g 1) = T(x_)

Similarly, the threshold element which is true only when f2 is true is

T(g 2) = T(x h 2) = T(x 2 + h 2 -1)

and the threshold element which is true only when h 2 is true is, by theorem
II.

h2 T(x 2 3 4= 1 + xl + Xl)

Consequently,

'rig 2) = T Ix ) + T(x + x_ + x 1) - 1

But by theorem IV the threshold element equivalent to this is

1]T 2

because Minx 2 > 0 1 and whenever {x 2 3 4+x 1 + x 1) > 0, x 2 0, whenever2 3
x22 > 0, (x 1 +x 1 +x 1)_> 0, i.e., k 1 - and.', choose K = > _-.

The threshold element which is true only when fl or f2 is true is by
heorem II and IV.

; T 2x +x 2 +x 1 +x 1 +x 1 - 1

0,because Minx 1 > 0 = 1, and wheneverx 1 > 0, x +x_ +x +x 1_
k I = 1 hence I_ = 2 >-_.

17



The threshold element which is true only when f3 is true is

f3 = T(x_ +x 4 - I)

By theorems II and IV

fl 0f20f3 = T [T(g 1) + T(g2) ]

T T(2x +x22 +x 21+x13 +x 4 _ 1)+ T(x +x I - 1

1 2 3 2 3 4 ]T 4x 2 + 2x 2 +x 2 + 2x I + 2x I + 3x I - 3

because Min g. > 0 = 1, and when g2 > 0, gl = 0, when gl > 0, g2 + 1 > 0,
i.e., k 1 = 1, _ence, K = 2 > -]-"
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Table I.- Logic element constants

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0

0

0

0

0

-1

-4

-3

-2

-1

-5

-5

-7
-8

-7
-6

u = sign

i= 1 j= 1

Computed logic element constants for the
quantized surface of figure 2.

One-dimensional control of the plant

[:]E:IEI[1x 1 0 x 1 1
= + U

2 -1 x 2 1
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j= 16

15

14

13

12

ii

i0

9

8

7

6

5

4

3

2

1

- i

- 2

- 3

- 4

- 5

- 6

- 7

8

- 9

-i0

-Ii

-12

-13

-14

-15

-16

310

295

283

267

254

239

223

206

190

172

152

130

I07

81

51

+ 2

-122

- 144

-144

-144

-144

-144

-144

-144

-144

-144

-144

-144

-144

-144

- 144

- 144

84

78

72

66

60

54

52

42

40

34

28

26

20

9

5

2

- 4

-12

-16

-22

-28

-35

-39

-46

-52

-58

-61

-66

-76

-80

-84

-90

Table II. - Logic element constants

- 1

- 26

- 51

- 73

- 96

-122

-145

-166

-189

-212

-235

-259

-284

-306

-330

-353

), = 55
0

u = sign x. j kJ+k.
1 1

i=l j=-16

Computed logic element constants for the
surface of figure 3.

One-dimensional control of the plant

x 2

o

x
3

D --

r-O. 0394 2. 140 -4. 404

1.00 -0.0274 -0.042:

0 0 -0.02

b _

x 1

x2 +

x 3

o]
°I

0.2
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Table III.- Logic element constants

j= 16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

69

63

57

45

42

34

28

22

20

16

7

2

- 7

-13

-24

-48

32

29

30

33

23

25

27
181

17_

16

17

12

12

10

9

9

7

4

5

6

5

- 5

- 4

- 9

- 8

- 3

-11

- 8

-15

-16

i -13

, -15

- 59

- 56

- 47

- 40

- 32

- 29

- 22

- 12

- 10

- 2

0

15

16

14

33

4O

39

52

48

61

67

73

79

85

91

97

103

109

115

121

127

133

u = sign LL+L ]xJ ×J
l l

i=1 j---16

Adjusted logic element constants for plant
of figure 3.

Set of 152 trajectories repeated 18 times.

One-dimensional control of the plant

-- • -

x 1

x 2

x 3

0. 0394

= 1.00

0

2. 140 -4. 404

-0. 0274 -0. 042

0 -0. 02

+

21

03
I
!

0 lu

02]



Table IV.- Logic element constants

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

- 1

- 2

- 3

- 4

- 5

- 6

- 7

- 8

- 9

-10

-11

-12

-13

-14

-15

-16

45

46

40

36

33

27

24

24

22

16

13

6

0

- 9

-26

-35

J
k 2

52

7O

70

70

72

77

70

46

63

65

56

46

47

32

20

14

17

6

- 1

- 8

- 9

-13

-25

-26

-33

-40

-39

-43

-51

-47

-49

-51

34

32

34

30

26

30

22

25

17

15

20

13

10

11

7

6

7

5

- 7

2

1

- 6

- 7

- 5

- 5

- 4

-10

-11

-12

-11

-15

-11

-70

-60

-50

-52

-46

-34

-39

-45

-13

-21

- 5

-11

- 6

+ 7

4

12

14

19

24

26

28

33

37

39

45

5O

57

58

58

58

56

69

u : sign J×)
xi 1

i= 1 j=-16

Adjusted logic element constants for

one-dimensional control of the plant

- . -

x 1

x 2

x 3

x 4

-0 1 0 0

0 -0.0394 2.140 -4.404

0 1.00 -0.0274 -0.0421

0 0 0 0.02

Ix
1

Jx2

Ix 3

Ix 4

Set of 198 trajectories repeated 18 times.

÷

0

0

U

0

0.2
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Figure l(b).- Simple quantized switching surface
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Figure 3.- Quantized third-order switching surface
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Figure 4. - Training and use of the logic net
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Figure 9.- Third-order one-dimensional time-optimal responses
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Figure l l.- Closed-loop responses at three stages of training
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Figure 13.- Fourth-order logical net control responses
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Figure 14.- Fourth-order logical net mechanization
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